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ABSTRACT 
 
The accuracy of single degree of freedom analysis of the response to accidental explosions is investigated. 
Maximum displacements for beams and stiffened plates predicted with simplified methods are checked by 
comparison with results of nonlinear finite element analyses using beam and shell modeling.  The simplified 
methods are adopted by the NORSOK Standard N-004 for design against accidental explosions, and the effect 
of some recent improvements of the formulations are checked. The ductility limit given in NORSOK is 
verified, by comparing strains that can be derived from the criterion with strains from finite element shell 
analysis 
 
 
INTRODUCTION 
 
Adequate design against accidental explosions is essential in the offshore industry as well as in many other 
industries and sectors.  The design is traditionally based upon simplified methods. Notably, the so-called 
Biggs’ method [1] has become very popular. Biggs’ approach is based upon a single degree of freedom 
(SDOF) idealisation of the fairly complicated non-linear response to an explosion. This facilitates fairly 
simple estimates to be made of the maximum displacement of a structural component. 
 
Today, the development of computers and algorithms has made possible advanced analysis with the 
nonlinear finite element method (NLFEM) of structural members and subsystems. This eliminates most of the 
simplifying assumptions that has to be made in the Biggs’- or other methods. However, it is generally not a 
trivial task to perform nonlinear analysis, e.g. the modelling, and execution of the analysis is often 
demanding with respect to both man-hours and skills. 
 
The simplified methods warrant therefore, still their existence; notably for screening of the severity of the 
explosion scenarios, reserving NLFEM for the critical cases. Every designer working with NLFEM should have 
knowledge of the method, allowing him/her to check the validity of the NLFEM results. Consequently, design 
requirements based on simplified methods remain in many design codes, e.g. both the Interim Guidance 
Notes (IGN) [2] and the NORSOK Standard N-004 [3] for steel offshore structures exposed to accidental 
actions.  
 
The purpose of the present work is to check the accuracy of SDOF methods, notably the approach adopted in 
NORSOK. A revision of this code is underway, and the effect of the modifications proposed is particularly 
studied. It should also be mentioned that Det Norske Veritas is in the process of developing a Recommended 
Practice (RP) for design against accidental actions [4]. This RP will be based upon the revised NORSOK N-
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004, but will also include a section of design philosophy as well as some very recent achievements. In 
recognition that it is often challenging to use the proposed method for designers who are not very familiar 
with the subject, the RP will contain several worked-out examples on the use of the methods to realistic 
problems in the Commentary sections. 
 
 
SDOF SYSTEM ANALOGY  
 
Biggs assumed that the structure under action of the dynamic pressure pulse - ultimately attains a deformed 
configuration comparable to the static deformation pattern. Using the static deformation pattern as 
displacement shape function, the dynamic equations of equilibrium can be transformed to an equivalent 
single degree of freedom system, expressed as: 

( ) ( )m,u u m,c ck M k M y K y y F(t)+ + =&&l l  (1)
where m,ukl and m,ckl are the load-mass transformation factor for uniform mass, and concentrated mass, m,uk  
and m,ck are the corresponding mass transformation factors for uniform mass and concentrated mass, kl is the 
load transformation factor. Mu and Mc are the total uniform mass and concentrated mass, F is the total load 
and K is the characteristic stiffness. 
 
For a linear system, the load mass factor and the characteristic stiffness are constant K = K1. For a non-linear 
system, the load-mass factor and the characteristic stiffness depend on the response (deformations). The 
resistance is often modelled as bi-linear. The response can then be expressed in terms of: K1- characteristic 
stiffness in the initial, linear resistance domain, Yel- displacement at the end of the linear resistance domain 
and T - eigenperiod in the initial, linear resistance domain 
 
For a given explosion load history the maximum displacement, ymax, is found by analytical or numerical 
integration of equation (1). For standard load histories and standard resistance curves maximum 
displacements are presented in design charts for various ratios of the limit resistance, Rel (corresponding to 
the formation of a plastic mechanism) and the maximum explosion pressure, Fmax. When the duration of the 
pressure pulse relative to the eigenperiod in the initial, linear resistance range is known, the maximum 
displacement, ymax, normalised against yel for a given Rel/Fmax is determined from the diagram as illustrated 
Figure 1 for a triangular pressure pulse. 

 
Figure 1 Response chart for an SDOF system with bi-linear and tri-linear resistance function 

 
An extension to the Biggs’ method introduced in NORSOK in the sense that response charts for systems with 
resistance functions exhibiting strength increase in the large displacement range are provided. This strength 
increase could be due to membrane action, strain hardening etc., or a combination of these effects. The 



strength increase is idealised as a third deformation phase with constant stiffness K3 as illustrated in Figure 
1. It is observed that the maximum displacement for such systems (K3 > 0) will be bounded, by contrast to 
systems with a purely bi-linear resistance. 
 
The Biggs’ method considers members that deform by bending, only. For members with small length to 
height ratio, shear deformation may become important, notably for members that can be considered as 
clamped at the boundaries (e.g. stiffeners subjected to uniform pressure over several frame spacings). In the 
forthcoming revision of NORSOK a modification of the resistance function in the linear region and the 
associated eigenperiod due to shear deformations is proposed.  
 
 
BEAM ANALYSIS - SDOF MODEL VS. NLFEM  
 
I-profile beams 
The shear effect model outlined above is verified against NLFEM analyses with the space-frame program 
USFOS [5] for beams with different I-cross-sections. The cross-sectional dimensions of the beam, which is 3 
m long, are shown in Figure 2a. For simplicity only the height of the profile is changed, keeping the other 
dimensions constant. The yield stress of the material is fy = 300 MPa.  
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Figure 2 a) I-profile dimensions b) Resistance function for the example beam with two masses. 
 
In order to check the accuracy of the proposed formulations results from SDOF analyses are compared with 
simulations using the nonlinear finite element program USFOS.  The beam concept in the program contains 
nonlinear geometry effect, and nonlinear plasticity is modeled with plastic hinges. In order to avoid 
obscuring the effect of shear flexibility, any effect of shear on the plastic bending moment is not taken into 
account. The ends of the beam are clamped, but free to move inwards, so no membrane action is generated. 
The resistance function is therefore considered to be bi-linear. Strictly, a tri-linear resistance function should 
be used, because plastic hinges are created at the ends of the beam prior to the mid hinge, whereby the 
stiffness in the last phase up to Rel is greatly reduced. Instead, the stiffness expression used, except for a few 
cases, is the so-called equivalent stiffness that preserves the “true” energy dissipation in the resistance up to 
Rel. These principles are illustrated Figure 2b. The explosion load is assumed to be uniformly distributed. 
The pressure pulse is triangular with duration 13.8 msecs and equal rise – and decay time. The maximum 
pressure is varied. 
 
The results of the study are summarized in TABLE 1. The maximum deformations obtained with the SDOF   
model and NLFEM are presented as ductility ratios, scaled against the limit of the elastic range, yel.  yel 
depends on whether it is calculated form pure bending considerations or whether the effect of shear 
deformations is included.  
 
It appears that the ductility ratios predicted depend significantly on whether shear is included or not, notably 
for small L/H ratios. When L/H = 6, the ductility predicted from pure bending is in the order of twice as 
large as that predicted when shear is included. It is observed, however, that the ductility ratios obtained with 
the SDOF model and the NLFEM is not very different (regardless of whether shear is included or not), except 
for ductility ratios close to 1. This means that the maximum deformation (in absolute terms) is predicted 



fairly well using a bending model. This is somewhat surprising, and leads to the conclusion that the results 
are relatively insensitive to the stiffness used in the elastic range, so long there is a correct correspondence 
between the elastic stiffness and the eigenperiod, and the ductility ratio µ >> 1. It is fair to say, though, that 
the shear model performs slightly better as far as maximum deformation is concerned. The most important 
effect is, however, that the model predicts the elastic stiffness, the elastic limit (yel ) and hence the ductility 
ratio, significantly better than the bending model. This is confirmed by the NLFEM analyses. 
 

TABLE 1  

DUCTILITY RATIOS FOR BEAM SUBJECTED TO EXPLOSION LOAD 

L/H 15 10 7.5 6 
Fmax [MN] 1.77 1.98 2.52 2.94 3.36 3.96 4.68 2.94 4.11 4.92 5.52 2.94 5.52 5.88 7.62
Rel [MN] 1.41 2.34 3.42 4.62 
Rel/Fmax 0.80 0.70 0.55 0.80 0.70 0.59 0.50 1.17 0.83 0.70 0.62 1.57 0.84 0.79 0.60

wmax[mm] 41 71 174 33 68 147 274 6.2 31 76 134 3.9 31 46 169
td/T 2.3 3.5 4.6 5.6 
µ1DOF 
µ1DOF * 

3.2 
3.7 

8.2 22.4 4.8 
4.3 

11.8 27.1 61.1 0.9
0.7

3.7
4.5

19.6 39.7 0.7 5.2 
5.3 

9.5 66.0

B
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µNLFEM 5.2 9.1 22.2 6.4 13.3 28.7 53.3 1.6 7.9 19.6 34.7 1.3 10.0 14.8 54.2
td/T 2.0 2.7 3.3 3.7 
µ1DOF 
µ1DOF * 

2.6 
2.8 

7.7 18.5 2.7 
2.9 

7.1 19.7 42.3 1.0
0.8

3.4
3.1

10.2 19.2 0.7 3.8 
3.5 

6.2 29.5

B
&

Sh
ea

r 

µNLFEM 3.9 6.8 16.8 4.1 8.6 18.6 34.5 0.9 4.4 10.9 19.4 0.6 4.8 7.2 26.3
 *  Ductility calculated with bi-linear stiffness in elastic region 

  
For both models the use of an equivalent stiffness yields a maximum deformation that deviate significantly 
from the NLFEM results for small ductility ratios (µ < 5), although the model that includes shear is better. 
Some results with the SDOF model are therefore also presented using the correct stiffness prior to and after 
formation of end hinges. The accuracy is then greatly improved. This implies that it could be worthwhile to 
perform accurate numerical simulations rather than using design charts for subjected to uniformly distributed 
explosion loads and small permissible ductility ratios. 
 
Beam with two concentrated masses
The beam studied is the I-profile with web height equal to 0.3 m. The beam is clamped, but free to move 
axially. It is assumed that two concentrated masses, 3⋅104 kg each, representing say mounted equipment, are 
positioned at L/3 from the ends.  This yields a utilisation of 0.33 with respect to the limit resistance, Rel. The 
limit resistance corresponds to formation of a complete plastic mechanism, which occurs at a displacement 
yel = 11.5 mm; virtually identical for the NLFEM analysis and the SDOF model with the shear effect included.  
The eigenperiod of the beam is 89.3 msecs using SDOF modelling, compared to 93.2 msecs from NLFEM. 
 
Assume that the beam is subjected a total explosion load of 3.25MN with a duration of 50 msecs and equal 
rise and decay time. The explosion load is first assumed distributed as two concentrated loads at the location 
of the concentrated masses (L/3 lengths). The maximum deformation according to NLFEM simulations is 48.1 
mm.  
 
In the SDOF analysis, the available resistance, Rel, has to be reduced by 1/3 due to the static utilisation caused 
by the gravity forces from the two masses, refer Figure 2b. This yields an effective Rel/Fmax = 0.36. Using the 
equivalent stiffness for bending and shear for two concentrated loads, the SDOF model predicts 43.4 mm 
maximum deformation. This is not bad considering that the effective stiffness in the linear phase should be 
smaller than the one used, because of the static utilisation. 
 
If the resistance in the linear range is modelled bi-linearly prior to and after formation of end hinges as 
indicated in Figure 2b, there is obtained 46.5 mm maximum deformation. 
 



In the above analysis the explosion pressure is lumped as two concentrated loads at L/3 from the ends. In 
many cases the pressure is transmitted to the beam from stiffeners such that modelling it as a uniformly 
distributed load is often more appropriate. With a uniform load distribution it is found that the same amount 
of deformation (48.1 mm) is obtained with a maximum total load of 4.58 MN. Hence, the beam has a 
significantly larger capacity than that predicted by the concentrated load model (3.25 MN). A major reason 
for the discrepancy is that the load factor for the concentrated load is 0.8 versus 0.53 if the load is uniformly 
distributed.  
 
Assume that an average load factor could be calculated according to the relative contribution from the two 
concentrated loads (static = 0.59 MN) and the distributed load (4.58 MN). This gives a load factor of 0.56. 
Hence, the total load from the lumped model (3.25 MN) should be multiplied by 0.8/0.56 = 1.43, giving 4.64 
MN. This result is quite close to the NLFEM value. 
 
 
ANALYSIS OF PLATE-STIFFENER 
 
The next problem to be studied is the accuracy of SDOF and beam modeling of stiffened plating. The results 
from non-linear analysis based on a shell finite element representation are assumed to give the most correct 
answer. The shell element used is the one developed by Haugen and Skallerud [6]. The plate is assumed to 
be 1.8 m long and 0.6 m wide, with an aspect ratio of three. The stiffener is a T-profile and the dimensions 
are varied as indicated in Figure 3. The length of the stiffener is 3.0 m. The stiffener is assumed welded to 
transverse girders, such that the profile shape is preserved at the ends. This is modeled with high stiffness 
beam elements at the ends of the shell model.  
 
It is assumed that the ends are clamped against rotation and either fixed or free axially. Symmetry conditions 
are imposed on the long edges of the plates. In addition, the edges are assumed to be constrained, i.e. the 
edges remain straight, but are free to move in. This is ensured by introducing springs with large in-plane 
shear stiffness on the long edges. The shell finite element model I shown in Figure 3. A single analysis is 
also performed with the refined mesh that is indicated. 

Figure 3 Shell element model of plate-stiffener  -  stiffener dimensions 
 
The static resistance for the three cases is plotted in Figure 4a-c, which shows the resistance scale factor 
versus lateral displacement. (A scale factor of 1.0 corresponds to a uniform pressure of 1.06 MPa). For the 
shell model plots are provided for both the stiffener at mid-span as well as for the plate midway between 
stiffeners at midspan. It is observed that the plate deforms significantly relative to the stiffener initially, but 
as the stiffener collapses, the relative deformation decreases. The resistance predicted by the beam model is 
somewhat softer than resistance of the shell model using the stiffener displacement, but the agreement is 
generally quite good. The resistance curves that can be derived from NORSOK (§A.6.9.2) underestimate 
clearly the onset of membrane stiffening when the ends are fixed axially.  This model is based upon a three-
hinge mechanism approach, which does not describe accurately the displacement field for uniformly 
distributed loads. Fortunately, the use of such resistance functions is conservative. 
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Web height 0.180 0.180 0.120 
Web thickness 0.012 0.008 0.006 
Top flange 
width 

0.050 0.050 0.050 

Top flange 
thickness 

0.012 0.012 0.010 

Plate flange 
width 

0.600 0.600 0.600 

Plate flange 
thickness 

0.012 0.008 0.006 
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c) Case 3    d) Case 2 dynamic response 

Figure 4 Static resistances for Cases 1 - 3 and examples of dynamic response for Case 2. 
 

TABLE 2 

 MAXIMUM DISPLACEMENT FROM NLFEM SIMULATIONS AND SDOF  MODEL 

 Duration 8.3 msec Duration 15 msec 
 Case 1 Case2 Case 3 Case 1 Case2 Case 3 

Max.load factor Fmax 1.5 1.5 0.5 1.0 0.8 0.5 
Resistance Rel 0.63 0.47 0.22 0.63 0.47 0.22 

Rel/Fmax 0.42 0.31 0.44 0.63 0.59 0.44 
td/T 2.34 2.47 1.79 4.2 4.5 3.22 

Shell 85 mm 156 mm 64 mm 48 mm 65 mm 89 mm 
Beam 92 mm 157 mm 64 mm 50 mm 55 mm 102 mm
1DOF 92 mm 185 mm 58 mm 43 mm 63 mm 71 mm 

 
Dynamic analyses are carried out for stiffener/plate axially fixed and subjected to explosion pulses with 
duration 8.3 msecs and 15 msecs. The pressure pulse is triangular, and the rise time is 30% of pulse duration. 
The maximum load factor is varied as shown in TABLE 2. The temporal variation of the mid-span 
displacement for the Case 2 simulations is shown in Figure 4d. For this case the displacements obtained with 
the beam model and the shell model are in excellent agreement for the large response, but differ by ~15% for 
the small response.  
 
TABLE 2 shows that the beam model is capable of predicting the maximum displacement with satisfactory 
accuracy for the other cases as well. 
 



Finally, the predictive capability of the SDOF model is investigated by numerical integration of the 
differential equation. In this study the resistance functions for the plate-stiffeners are based upon a bi-linear 
representation of the static resistance functions simulated with the shell finite element model as shown in 
Figure 3. The eigenperiods are estimated using beam relationships. From TABLE 2 it is observed that the 
maximum displacements are similar to those simulated with NLFEM. This confirms that the SDOF model 
performs satisfactory provided that the resistance function is representative for the real response. Obviously, 
because the resistance functions given for stiffened plates in NORSOK underestimate the static resistance 
(refer Figure 4a-c), the response to explosion loads will be overestimated if the NORSOK resistances are used. 
 
 
DUCTILITY LIMIT 
 
A very important issue in conjunction with designing against explosions is the level of deformation that can 
be assumed prior to disintegration of the member.  Various ductility limits are specified in codes. In 
particular, NORSOK offers a ductility limit (§A.3.10.4) that is intended for application on resistance curves 
derived from NLFEM or simple plastic methods based on the plastic hinge concept.  
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Figure 5 Maximum strain versus mid-span displacement for plate-stiffener 

 
Figure 5 shows the relationships between maximum strain (≡ critical strain for rupture) and mid-span 
displacement (denoted NORSOK), which can be derived from the NORSOK criterion, for three cases of plate-
stiffener. For Case 1 and Case 2 plate-stiffener the criterion is virtually equal. The strains predicted in the 
NLFEM simulations are plotted in the same diagrams. It is observed that the strains from the static shell 
analyses agree quite well with those obtained in the dynamic analyses, although a small dynamic 
dependence is evident for Case 2. A single analysis is performed with the refined mesh for Case 2. While the 
resistance curves show very little sensitivity to the mesh fineness considered, it appears that the fine mesh 
yields a noticeable increase in the predicted strain. Figure 5 shows that NORSOK ductility relationship 
performs quite well. Except for the fine mesh at large deformation, the strain that is derived from the 
criterion is conservative compared to those of the NLFEM simulations, notably for intermediate levels of 
strain. It should be noticed that elastic displacements are not included in the NORSOK criterion.  It is not 
unreasonable to add the elastic displacement to the value given by the criterion, if the resistance curve 
includes elastic displacements. 
 
It is a difficult to say what mesh fineness that should be the required. The NORSOK code acknowledges at 
least the sensitivity of the strain predictions to mesh fineness and specifies that the critical average 
membrane strain for a shell element in NLFEM shell analysis of axially loaded plate material, in lieu of more 
accurate considerations, should be taken as  

max
0.650.02 t 5

t
ε = + ≥l

l
 (2)



where l is the length of element shorter side and t is thickness of plate. In the present case is l/t < 5 for both 
meshes, so the same ductility limit will apply.  
 
 
 
CONCLUSIONS 
 
Comparisons with the results of NLFEM beam analyses have shown that SDOF METHODS can provide very 
satisfactory estimates of the response to accidental explosions, provided that the governing physical effects 
are represented in the resistance functions. As concerns prediction of the maximum absolute deformation, 
correct modelling of the stiffness in the linear elastic range is not so important, provided that the ductility 
ratio µ is large and the calculated eigenperiod corresponds to the stiffness assumed. However, the calculated 
ductility ratios may be false and criteria for permissible ductility ratios should be used with care. 
 
For short, clamped members shear deformation has a pronounced effect on both the initial stiffness and 
eigenperiod.  Very satisfactory prediction of the maximum deformation is obtained with SDOF   models 
including the shear effect. This constitutes therefore an improved basis for ductility considerations. 
 
It is shown that beam modelling of a plate-stiffener performs quite well when compared with results of 
NLFEM shell analysis. The static resistance of the beam is very similar to the one obtained for the shell, while 
the simple methods underestimates the resistance.  If the static resistance from NLFEM analysis is used as 
input, the SDOF method works very well.  
 
The resistance the plate-stiffeners studied seem to be invariant with respect to the size of the element mesh 
actually used. However, for a given case, the strain is clearly mesh size dependent. The NLFEM strains are 
compared with the strain level that can be derived from the ductility criterion given in NORSOK. It seems that 
the NORSOK criterion constitutes a reasonable “upper bound” for a plate-stiffener.  
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